Innovative Braided Sutures for Surgery

Innovative Braided Sutures for Surgery

Shares

This study shows that knot untying happens at lower loads in the case of braids without braided core as compared to double braid suture.

Sutures have been made from a wide  variety  of materials    including    surgical    catgut,    silk,    and polyolefin    such    as    polypropylene,    polyamides, polyesters, polyglycolic acid, glycolide-lactide copolymers,  etc.  Sutures intended for  the  orthopaedic surgery  have  to meet  many  requirements.  They must be  substantially  non-toxic,  capable  of  being  readily sterilized  and  have  good  tensile  strength,  acceptable knot-tying, excellent flexibility, smoothness and knot-holding  characteristics.  Although  on  an  industrial scale, only  suture  diameter  and  breaking  strength  are tested,  several     other     characteristics     must     be determined   to   assess   suture   performance.   Many testing procedures have been described in literature. Debbabi et al. proposed new methods  to  determine knot    slippage    ratio,    percentage    of    deformation recovery, knot pull and straight pull curves. But there is   no   official   standard   available   today   for   this purpose.

The European Pharmacopoeia  (EP)  and  the United   States   Pharmacopoeia   (USP)   are   the   only references    for    suture    material. United States pharmacopeia gives requirement related to knot pull strength depending on diameter. The   first   study   undertaken   on   the   mechanical properties of suture threads was carried out in 1981by Chu et  al. on  different  types  of  sutures marketed. They analysed the    tensile behaviour of seven commonly  used  sutures.  The results  showed  that  the geometry of the suture has no significant effect on the elastic limit (yield point). They also showed that there is a small difference between the Young’s modulus of braided polyamide suture and that of mono filament1.

Several    studies    have    been    performed    on    the mechanical  properties  of  suture  materials,  including the behaviour of  the  force-elongation  curve,  Young’s modulus,  rate  of  slippage,  strain  at maximum  force (deformation   %),   knotted   and   unknotted   suture strength, knot safety, work at break, stress relaxation, strength knotting, coefficient of friction, and flexibility. However, most of these studies  have  been limited  to  the  mechanical  characterization  of  a  few common commercial yarns on the market. Synthetic  sutures  are  available  in  the  market  as monofilament  or  braid  structure.  Synthetic braided sutures  are  obtained  by  using  a  circular  braiding machine.

They    have    good    flexibility,    knot security    and    handling    proprieties    compared    to monofilaments.  However,  the  currently  available tubular   braided   sutures   exhibit   some   deficiencies. They  have  a  rough  surface  and  a  greater  tendency  to break.  They  tend  sometimes  to  be  compacted  and wiry and exhibit a memory shape behaviour such that at  the  time  of  use,  it  is  usually  necessary  for  the surgeon  or  assistant  personnel  to  flex  and  stretch  the suture  to  make  it  more  flexible.  Furthermore,  tubular braided  sutures  can  be  easily  compacted and  show a non-uniform  diameter  and  a  rough  surface.  To  solve these problems, braided sutures with cabled core have been  used.  Nevertheless,  these  sutures  have  shown  a non-uniform  rough  surface  and  a  greater  tendency  to break. In   literature,   the   information   about   effect   of manufacturing    conditions    on    sutures    and    knot proprieties  is  scanty. 

Although  braiding  was  used long time ago for producing sutures, a few attempts to improve  the  properties  of  braided  suture  have  been conducted.  Indeed,  many  sutures  exhibit  failure  after implantation. Available data is limited to few analyses on  effect  of  manufacturing  conditions.  In  his  work, Rawalet  al. developed  tensile  analytical  models  of braided sutures to predict their stress–strain behaviour based   on   braid   geometry,   braid   kinematics   and constituent  monofilament  properties. The  model  has accounted  for  the  changes  in  the  braid  geometry, including braid angle, diameter and Poisson’s ratio. However,  proposed  model  is  limited  to  the  tensile strength  properties  and  do  not  consider  the  effect  of manufacturing  conditions  and  the  effect of  adding  a core. Kaplan et al.26and Chesterfield et al. presented the    tensile    strength    and    knot-pull    strength    of manufactured  sutures  as  function  of  manufacturing conditions. 

However,  they  did  not  investigate  the reason  of  the  effect  of  the  chosen  parameters  on sutures   performances.   Debbabiet   al.,   designed   a model, predicting the effect of braiding conditions on suture tensile strength properties. Tubular braids can appear as a hollow tube or filled with  an  in  lay  structure  that  can  be fed  through  the centre of a tubular braiding machine. The inlay can be either  in  the  form  of  one  homogeneous  score  or  as multiple  strands  of  yarn.  If  the  inlay  itself  is  braided as  well,  it  becomes a  double braid  construction.  The use  of  an  inlay  keeps  the  tubular  braid  in  a  round shape,  thus  distributing  applied  loads  over  the  inlay. Consequently,  adding  core  to  braids  promotes  suture strength  and  non-compressibility  for  a  given  suture diameter,   thus   reducing   the   volume   of   the   voids therein. In their patent, Foersteret al. presented only the characteristics  of  the  double  braided  structures.

They   do not analyse the   effect   of   manufacturing conditions  of double  braided  suture  on all tensile  and knot  pull strength.  In  their  study,  Saraswat et al. presented  an  analytical  model  to  predict  the  tensile behaviour of   multilayer   braided   structures.   Only a comparison was made between theoretical and experimental values of braid angle, toughness, and stress-strain   characteristics   of   multilayer   braided structures.   However,   knot   performances   of   these sutures  were  not  studied  in  detail,  and  hence  need  to be investigated to predict sutures behaviour after use. Thus,  there  is  a  lack  of  information  regarding  the effect   of   braiding   process   on   straight   and   knot performances of double braid sutures. For    this    reason,    the    main    purpose    of    this investigation   is   to   study   the   effect   of   braiding parameters   on  suture mechanical   performances   of double  layer  braided  suture.  The impact  of  adding  a braided  core  on distinctive  characteristics of  suture, such   as   tensile   strength,   knot   pull   strength,   knot efficiency    and    slippage    ratios,    has    also    been investigated.

Technical details

           Polyethylene   terephthalate   (PET)   multifilament yarns were used for sutures manufacturing. PET yarns were  selected  because  of  their  high  biocompatibility and high tenacity to develop suture for orthopedic   interventions.   Indeed, PET   material with  high  tenacity  is  often  used  to  obtain  suture behaviour adapted   to   the   applied   stress   during healing1.  The  used  yarns  consist  of  non-texturized PET polyester yarns with varying counts(49, 98, 147, and   196),   each   composed   of   different   filament numbers(6, 32, 48 and64)respectively.

The following aspects have been considered.

  1. Suture manufacturing
  2. Tensile and knot performance

Figure 1: Device for tensile and knot performance testing

Influence of sheet and core parameters

The effect  of  sheet  and  core  parameters  on  tensile and knot performances of the suture has been studied. It is found that  the  number  of  sheath  yarns  has some   relations with   overall   suture   diameter.   The increase  in  the  number  of  sheath  yarns  generally increases the sutured diameter. As already reported by Chesterfield et al., the   preferred   suture   can   be optionally  constructed  around  a  filamentous  core. The filaments comprising the core need not to be as fine as those comprising the sheath yarns. The increase in the number   of   yarns   constituting   the   braided   core significantly  leads  to  greater  overall  suture  diameter. Thus, the diameter of overall suture increases by adding braid core.

Mechanical properties of non-knotted suture

The load-elongation curves of the braided sutures made with 8, 12 and 16 sheet yarns without  a  braided  core.  It  is  observed  that  the maximum force at break is almost proportional to the number of sheet yarns.  For example,  the  value  of the straight pull strength of the suture made with16-sheet  yarn  is  twice  higher  than  that  of  the  suture made with8-sheetyarn. However, the deformation at the  breaking  forced  on  to  show  this  proportionality. As  a  consequence  of  the  increasing  number  of  sheet yarns,   the   braiding   angle   and   the   cover   factor increase.    Besides,    the    deformation    of the    braid increases    with    increasing    braiding    angle.

However, when cover  factor  increases,  the  friction between  the  filaments  opposes  the  displacements  of the   filaments   in   the   braid   and   the   deformation decreases  consequently.  The  increase  of  filaments friction  between  each  other  inhibits  the  elongation  of the braid. It is found  that  the  ultimate  tensile strength   (UTS)   is   not   affected   by   braided   sheet composition. Thus, by using the same yarn account, the suture  shows  approximately  the  same  UTS regardless sheet yarn number. However, the sheet yarn composition affects  the  suture  linear  rigidity.  Therefore,  Young’s modulus  shows  nonlinear behaviour as  a  function  of sheet  yarn  number.  Sutures  made  with  4  and  8  horn gears have more flexible and deformable structures than the  sutures  made  with  6  horn  gear  machines,  because this machine gives compressible plate braids. It is  observed  that  the presence of the braided core leads to an improvement in a straight pull strength. In fact, the maximum force at break increases with adding braided core for suture having   similar   diameters.   It   is   also   found   that manufactured   sutures   in   this   study   have   similar extension  as  commercial  suture1,  38. 

The  addition  of braided  core  increases  the  deformation  at  break  of non-knotted  suture.  Thus  multifilament  yarns  have  a helical  shape  in  the  braided  structure.  The  tensile force  applied  on  suture  makes  yarns  parallel  to  the braid   axis   direction,   causing   a   jamming   of   the structure.  The braid  is  then  as  extensible  as  there  are inclined    yarns    in    the    structure.    These    results correspond  with  the  finding  as  reported  by  Hristovet   al.,   who   tested the   mechanical behaviour of circular  hybrid  braids  made  of  polypropylene  and PET.  So, braid  is  more  extensible,  as  there  are  yarns inclined in the structure.

It  is  shown  that braided sutures  with  braided  core  exhibit  a  lower  Young’s modulus  than  sutures  without  braided  core.  This  can be  explained  by  the  fact  that  the braided  core,  added parallel to the axis of the braid leads to the increase in deformation  under  lower  applied  forces.  Obtained rigidity  becomes  lower  than that  of the  commercial suture  by  adding  braided  core.  By analysing the UTS,  the  addition  of  the  core  can  reduce  the  UTS. This can be explained by the fact that adding braided core increases suture diameter. So, during manufacturing,  the  optimum  braided  core  must  be determined to obtain the best mechanical properties.

Mechanical properties of knotted suture

Knot  performances have been determined. It  can  be seen    that    the    knot    pull    strength    meet    USP requirements.  It is  observed  that  suture break  occurs  quite  more  easily  for  knotted  sutures than  for  non-knotted  suture.  The  presence  of  a  knot lowers  the  knot  pull  strength  of  all  suture  types. In the case of the three manufactured sutures without  braided  core,  the  load-elongation curves of knotted sutures show an importing stick-slip points  corresponding  to  knot  untying  happening  in low loads (around 10 N) and can be explained by the knot  material  slippage. 

The  failure  of  knotted  sutures occurs  at  the  knot  rather  along  the  suture  indicating that  the  knot  itself  is  an  area  of  high  stress.  Similar results are obtained by Hewardet al., who tested the mechanical performances of non-sterile monofilament sutures  made  of  polyamide,  polyinylidene  fluoride and  polyester.  Other  studies  reported  that  knot  is  the weakest part of any suture or ligature when subjected to tension. Several factors contribute to the fact that failure occurs at the knot rather than along the suture. Firstly, break a great the knot may be caused by forces being  oriented  at  the  knot  at  an  acute  angle  to  the suture   axis. Secondly,   the   suture   yarns   in the   knot region may be weakened during knot construction and loading.   Third,   tightening   the   knot   and   friction between  yarns  in  the  knot  may  contribute  to  the failure.

These   results   are   in   good   agreement   with   the obtained  knot  efficiency  results.  Indeed, the knot efficiency is less than 100 per cent and does not exceed 50 per cent. In addition, suture manufactured  with 12 sheet yarns   shows   the   lowest   knot   efficiency   because obtained   suture  is   more  compressible   than  suture made  with  8  and16  sheet  yarns  as  can  be  seen  from the  evolution  of  deformation  of  unknotted  suture.  To avoid  compressibility  of  suture  and  to  have  better handling  properties  during  tying.  It  is  recommended to  add  a  core  in  the  suture.  Generally,  when  a cabled   core   is   added   to   the   suture, a rough suture surface is obtained. In previous studies researchers  showed  that  smoother  surface  is  obtained by using maximum possible  number of filaments  and sheet  yarns.  In  fact,  they  used  filaments  with  very small  diameters  that  allow  using  a  high  number  of sheet  yarns  leading  to  compact  and  smooth  suture surface. The  increase  in  the  number  of  yarns  in  braid  core shows  no  significant  differences  on  deformation  of knotted suture. It leads to slight increase in breaking  load  in  the  case  of  small  diameter. 

The obtained   results   are   compatible   with   the   results obtained   for   knot   efficiency.   In   fact   no amelioration of knot efficiency is noted by adding the braided   core.   In   other   findings,  the   inclusion of braided core yarns prevent the occurrence of stick-slip points   in   the   load   elongation   curve.   As mentioned  earlier, this  phenomenon  can  be  attributed to the  increased  friction among  yarns within the  knot due  to the  utilization of a high number of core  yarns, thus  hindering knot  material slippage  when  subjected to applied load. The analysis of the evolution of slippage ratio as a function  of  the  applied  load  leads  to the conclusion  that  the  increase  of  the  number  of  sheet yarns  involves  a  reduction  of  the  slippage  ratio.  This can be explained by the fact that the increase of sheet yarn number increases the braid angle. Consequently, polyester yarns become  less  oriented  to  the  direction of braid axis, causing a high friction coefficient of the braid and a stable knot.

Conclusion

The effect of braid composition on performances of simple and double layer braided sutures has been—Knot  efficiency  of  manufactured  braided  sutures  (a) without braided core and (b)with braided core studied.  Obtained  results  show  that  the  adding  of braid core leads to good knot security. It is concluded that braid core reduces the compressibility of sutures. This study clearly shows that knot untying happens at lower loads in the case of braids without braided core as compared to double braid suture. The data presents a  great  interest  to  manufacturers  of  braided  suture whom model the architecture of the suture in function of  needed  knot  performances.  In fact,  obtained  results recommend    manufacturing    of    suture    with    high number  of  sheet  yarns,  low  yarn  count  and  low braided  core  diameter  to  have  uniform  surface  and secure    knot.    Further   study    will    focus   on    the development of  theoretical  model  permitting  to  help manufacturers  to   predict  suture   performance   as   a function of manufacturing conditions.

References

  • Chu  C  C,  Greisler  H P  &Fraunhofer  J  A  V, Wound  Closure Biomaterials and Devices,1stedn(CRC-Press, United States of America), 1997, 416.
  • 2.. Rodeheaver  G  T,  Powell  T  A,  Thacker  J  G  &Edlkh  R  F, Am J Sur,154 (1987).
  • Heward A G, Laing R M, Carr D J & Niven B E, Text Res J, 74 (1) (2004) 83.
  • Hong  T,  King  M  W,  Michielse  S,  Cheung  L  W  K,  Mary  C, Guzman R &Guidoin R, ASAIOJ, 44 (6) (1998) 776
  • Karaca E  & HockenbergerA  S, J  Biomed  Mater  Res  B  ApplBiomater, 87 (2) (2008) 580.
  • Tomia  N,  Tamai  S,  Morihara  T,  Ikeuchi  K  &Ikada  Y, J ApplBiomater, 4 (1993) 61.
  • ebbabi F, Abdessalem S B &Limem S, J Text Inst,102 (6) (2011) 548.
  • The United States Pharmacopeia USPXXII(U.S. PharmacopeiaConvention Inc, Rockville, MD, USA),1990.
  • Chu C C, Ann Surg, 193 (3) (1981) 365.
  • Thacker  J  G,  Rodeheaver  G,  Moore  J  W,  Kauzlarlch  JJ, KurtzL, Edgerton M & Edlich R F, AmJ Surgery, 130 (1975) 375.

About the authors:

  • S Karthikeyan is from the Department of Petrochemical engineering, SSM College of Engineering, Komarapalayam, Tamil Nadu.
  • Dr C Kayalvizhi is from the Department of Textile Technology, RVS College of Engineering, Dindigal, Tamil Nadu.
  • P Ramya is from the Department of Chemistry, SSM College of Engineering, Komarapalayam, Tamil Nadu.
  • Dr N Gokarneshan is from the  Department of Textile Chemistry, SSM College of Engineering, Komarapalayam, Tamil Nadu.
CATEGORIES
TAGS